Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Virus Evol ; 8(1): veac046, 2022.
Article in English | MEDLINE | ID: covidwho-1978261

ABSTRACT

Over the last several decades, no emerging virus has had a profound impact on the world as the SARS-CoV-2 that emerged at the end of 2019 has done. To know where severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) originated from and how it jumped into human population, we immediately started a surveillance investigation in wild mammals in and around Wuhan when we determined the agent. Herein, coronaviruses were screened in the lung, liver, and intestinal tissue samples from fifteen raccoon dogs, seven Siberian weasels, three hog badgers, and three Reeves's muntjacs collected in Wuhan and 334 bats collected around Wuhan. Consequently, eight alphacoronaviruses were identified in raccoon dogs, while nine betacoronaviruses were found in bats. Notably, the newly discovered alphacoronaviruses shared a high whole-genome sequence similarity (97.9 per cent) with the canine coronavirus (CCoV) strain 2020/7 sampled from domestic dog in the UK. Some betacoronaviruses identified here were closely related to previously known bat SARS-CoV-related viruses sampled from Hubei province and its neighbors, while the remaining betacoronaviruses exhibited a close evolutionary relationship with SARS-CoV-related bat viruses in the RdRp gene tree and clustered together with SARS-CoV-2-related bat coronaviruses in the M, N and S gene trees, but with relatively low similarity. Additionally, these newly discovered betacoronaviruses seem unlikely to bind angiotensin-converting enzyme 2 because of the deletions in the two key regions of their receptor-binding motifs. Finally, we did not find SARS-CoV-2 or its progenitor virus in these animal samples. Due to the high circulation of CCoVs in raccoon dogs in Wuhan, more scientific efforts are warranted to better understand their diversity and evolution in China and the possibility of a potential human agent.

2.
PLoS Pathog ; 18(2): e1010259, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1690683

ABSTRACT

At the end of 2019 Wuhan witnessed an outbreak of "atypical pneumonia" that later developed into a global pandemic. Metagenomic sequencing rapidly revealed the causative agent of this outbreak to be a novel coronavirus denoted SARS-CoV-2. To provide a snapshot of the pathogens in pneumonia-associated respiratory samples from Wuhan prior to the emergence of SARS-CoV-2, we collected bronchoalveolar lavage fluid samples from 408 patients presenting with pneumonia and acute respiratory infections at the Central Hospital of Wuhan between 2016 and 2017. Unbiased total RNA sequencing was performed to reveal their "total infectome", including viruses, bacteria and fungi. We identified 35 pathogen species, comprising 13 RNA viruses, 3 DNA viruses, 16 bacteria and 3 fungi, often at high abundance and including multiple co-infections (13.5%). SARS-CoV-2 was not present. These data depict a stable core infectome comprising common respiratory pathogens such as rhinoviruses and influenza viruses, an atypical respiratory virus (EV-D68), and a single case of a sporadic zoonotic pathogen-Chlamydia psittaci. Samples from patients experiencing respiratory disease on average had higher pathogen abundance than healthy controls. Phylogenetic analyses of individual pathogens revealed multiple origins and global transmission histories, highlighting the connectedness of the Wuhan population. This study provides a comprehensive overview of the pathogens associated with acute respiratory infections and pneumonia, which were more diverse and complex than obtained using targeted PCR or qPCR approaches. These data also suggest that SARS-CoV-2 or closely related viruses were absent from Wuhan in 2016-2017.


Subject(s)
COVID-19/epidemiology , Disease Outbreaks , Pneumonia/epidemiology , Respiratory Tract Infections/epidemiology , SARS-CoV-2/isolation & purification , Acute Disease , Adolescent , Adult , Aged , Aged, 80 and over , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/virology , China/epidemiology , Cohort Studies , Female , Gene Expression Profiling , Humans , Male , Metagenomics , Middle Aged , Phylogeny , Pneumonia/microbiology , Respiratory Tract Infections/microbiology , Young Adult
3.
Virus Evol ; 6(2): veaa078, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-1383237

ABSTRACT

To better understand the genetic diversity, host associations and evolution of coronaviruses (CoVs) in China we analyzed a total of 696 rodents encompassing 16 different species sampled from Zhejiang and Yunnan provinces. Based on reverse transcriptase PCR-based CoV screening of fecal samples and subsequent sequence analysis of the RNA-dependent RNA polymerase gene, we identified CoVs in diverse rodent species, comprising Apodemus agrarius, Apodemus chevrieri, Apodemus latronum, Bandicota indica, Eothenomys cachinus, Eothenomys miletus, Rattus andamanensis, Rattus norvegicus, and Rattus tanezumi. CoVs were particularly commonplace in A. chevrieri, with a detection rate of 12.44 per cent (24/193). Genetic and phylogenetic analysis revealed the presence of three groups of CoVs carried by a range of rodents that were closely related to the Lucheng Rn rat CoV (LRNV), China Rattus CoV HKU24 (ChRCoV_HKU24), and Longquan Rl rat CoV (LRLV) identified previously. One newly identified A. chevrieri-associated virus closely related to LRNV lacked an NS2 gene. This virus had a similar genetic organization to AcCoV-JC34, recently discovered in the same rodent species in Yunnan, suggesting that it represents a new viral subtype. Notably, additional variants of LRNV were identified that contained putative non-structural (NS)2b genes located downstream of the NS2 gene that were likely derived from the host genome. Recombination events were also identified in the open reading frame (ORF) 1a gene of Lijiang-71. In sum, these data reveal the substantial genetic diversity and genomic complexity of rodent-borne CoVs, and extend our knowledge of these major wildlife virus reservoirs.

4.
Virol Sin ; 35(6): 785-792, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1217481

ABSTRACT

Healthcare workers (HCWs) are at high risk of occupational exposure to the new pandemic human coronavirus, SARS-CoV-2, and are a source of nosocomial transmission in airborne infectious isolation rooms (AIIRs). Here, we performed comprehensive environmental contamination surveillance to evaluate the risk of viral transmission in AIIRs with 115 rooms in three buildings at the Shanghai Public Health Clinical Center, Shanghai, during the treatment of 334 patients infected with SARS-CoV-2. The results showed that the risk of airborne transmission of SARS-CoV-2 in AIIRs was low (1.62%, 25/1544) due to the directional airflow and strong environmental hygiene procedures. However, we detected viral RNA on the surface of foot-operated openers and bathroom sinks in AIIRs (viral load: 55.00-3154.50 copies/mL). This might be a source of contamination to connecting corridors and object surfaces through the footwear and gloves used by HCWs. The risk of infection was eliminated by the use of disposable footwear covers and the application of more effective environmental and personal hygiene measures. With the help of effective infection control procedures, none of 290 HCWs was infected when working in the AIIRs at this hospital. This study has provided information pertinent for infection control in AIIRs during the treatment of COVID-19 patients.


Subject(s)
COVID-19/transmission , Environmental Monitoring/methods , Hospitals, Isolation , SARS-CoV-2/isolation & purification , Air Microbiology , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , China/epidemiology , Cross Infection/transmission , Environmental Microbiology , Health Personnel , Humans , Infection Control/instrumentation , Infection Control/methods , Pandemics/prevention & control , RNA, Viral/isolation & purification , Risk Factors , Viral Load
5.
EMBO J ; 39(24): e105896, 2020 12 15.
Article in English | MEDLINE | ID: covidwho-903069

ABSTRACT

COVID-19 is characterized by dysregulated immune responses, metabolic dysfunction and adverse effects on the function of multiple organs. To understand host responses to COVID-19 pathophysiology, we combined transcriptomics, proteomics, and metabolomics to identify molecular markers in peripheral blood and plasma samples of 66 COVID-19-infected patients experiencing a range of disease severities and 17 healthy controls. A large number of expressed genes, proteins, metabolites, and extracellular RNAs (exRNAs) exhibit strong associations with various clinical parameters. Multiple sets of tissue-specific proteins and exRNAs varied significantly in both mild and severe patients suggesting a potential impact on tissue function. Chronic activation of neutrophils, IFN-I signaling, and a high level of inflammatory cytokines were observed in patients with severe disease progression. In contrast, COVID-19-infected patients experiencing milder disease symptoms showed robust T-cell responses. Finally, we identified genes, proteins, and exRNAs as potential biomarkers that might assist in predicting the prognosis of SARS-CoV-2 infection. These data refine our understanding of the pathophysiology and clinical progress of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/pathology , Biomarkers/blood , COVID-19/immunology , COVID-19/virology , Female , Genomics/methods , Humans , Lipoproteins/metabolism , Male , Metabolomics/methods , SARS-CoV-2/physiology , Severity of Illness Index , Viral Load
6.
Nature ; 580(7803): E7, 2020 04.
Article in English | MEDLINE | ID: covidwho-73543

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Cell ; 181(2): 223-227, 2020 Apr 16.
Article in English | MEDLINE | ID: covidwho-17998

ABSTRACT

The ongoing pandemic of a new human coronavirus, SARS-CoV-2, has generated enormous global concern. We and others in China were involved in the initial genome sequencing of the virus. Herein, we describe what genomic data reveal about the emergence SARS-CoV-2 and discuss the gaps in our understanding of its origins.


Subject(s)
Betacoronavirus/genetics , Chiroptera/virology , Coronavirus Infections/virology , Disease Reservoirs/virology , Pneumonia, Viral/virology , Animals , Animals, Wild , COVID-19 , China , Coronavirus Infections/transmission , DNA, Environmental , Genome, Viral , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Sequence Analysis, RNA , Zoonoses/virology
8.
Nature ; 579(7798): 265-269, 2020 03.
Article in English | MEDLINE | ID: covidwho-258

ABSTRACT

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Subject(s)
Betacoronavirus/classification , Communicable Diseases, Emerging/complications , Communicable Diseases, Emerging/virology , Coronavirus Infections/complications , Coronavirus Infections/virology , Pneumonia, Viral/complications , Pneumonia, Viral/virology , Severe Acute Respiratory Syndrome/etiology , Severe Acute Respiratory Syndrome/virology , Adult , Betacoronavirus/genetics , COVID-19 , China , Communicable Diseases, Emerging/diagnostic imaging , Communicable Diseases, Emerging/pathology , Coronavirus Infections/diagnostic imaging , Coronavirus Infections/pathology , Genome, Viral/genetics , Humans , Lung/diagnostic imaging , Male , Phylogeny , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/pathology , RNA, Viral/genetics , Recombination, Genetic/genetics , SARS-CoV-2 , Severe Acute Respiratory Syndrome/diagnostic imaging , Severe Acute Respiratory Syndrome/pathology , Tomography, X-Ray Computed , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL